Vivekananda College of Engineering & Technology

[A Unit of Vivekananda Vidyavardhaka Sangha, Puttur ®-574 203] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.8

<ME>

<24-06-21**>**

INTERNAL ASSESSMENT TEST - 2

Dept: ME	Sem / Div: 6 th	Sub:Heat Transfer	S Code: 18ME63
Dt:25/06/2021	Time:9.30 -11 am	Max Marks: 50	Elective: N
	1		

Note: Answer any 2 full questions.

QN		Questions	Mark	RBT	CO's
	1	Part A			
1	а	Derive the expression for temperature distribution for a short fin of	10	L3	CO2
		uniform cross section without insulated tip starting from			
		fundamental energy balance equation.			
	b	A long rod of 12mm c/s made up of low carbon steel protects into	8	L3	CO2
		air at 35°C from a furnace wall at 200°C. The connective heat			
		transfer coefficient of the material is estimated as $22w/m^2k$.			
		Conductivity of material is 51w/mk. Determine the location from			
		the wall at which temp will be 60°C. Also calculate temp at 80mm			
		from the base and fin efficiency and effectiveness.			
	c	A steel ball bearing of K=50w/mk, α =1.3*10 ⁻⁵ m ² /s, 40mm in	7	L3	CO2
		diameter is heated to a temp of 650°C.It is then quenched an oil			
		bath at 50°C where the heat transfer co-efficient is 300 w/m ² K.			
		Calculate time required for bearing to reach 200°C			
		i) Total time required.			
		ii) Total amount of heat removed for bearing during this			
		time.			
		iii) Instantaneous heat transfers when they are first			
		immersed in oil bath (T=0) & when they reach 200° C.			
2	a	What do you mean by Lumped System Analysis? Obtain an	8	L3	CO2
-		expression for temperature distribution for this system in terms of	5	20	0.02
		Biot and Fourier numbers			
	1		10	10	
	b	A long cylindrical rod of radius 7.5cm comes out of a Oven at	10	L3	CO2
		815°C throughout is cooled by quenching it in a large bath of 38°C			

		base Determine the unknown thermal conductivity.			
		unknown thermal conductivity at a distance of 20cm. From the			
		base was measured & it was found to same as that of the rod of			
		temp $t_{\rm f.}$ Surface temp of aluminium at a distance of 40cm from the			
		$t_{\rm o}.$ Both the rods are losing heat by connection with an h & ambient			
		thermally attached to a metal surface which is maintained at a temp			
		conductivity is not known. To determine $k_2 \mbox{ one end of each rod is } % \begin{tabular}{lllllllllllllllllllllllllllllllllll$			
		aluminium of K=200w/mk. While the other one whose thermal			
	c	Two very long slender rods of same diameter given, one rod is of	8	L3	CO2
		diameter, 50m long at a rate of 0.1 kg/sec			
		laminar flow of ethylene glycol at 40°C through a pipe of 5cm			
	b	Determine friction factor and pressure drop for a fully developed	7	L3	CO3
3	a	Establish a Relationship between Nusselt Number, Prandtl number and Reynold's numbers by using Dimensional analysis.	10	L3	CO3
2		Part B	10	1.2	002
		effectiveness.			
		ii) Neglect the heat loss from the end, also calculate fin			
		i) Heat loss from the plane wall per m^2 of the wall surface.			
		Determine fin efficiency			
		at 40° C with surface heat transfer co-efficient of 50 w/m ² k.			
		temp of 200°C & fin dissipate heat by convention into an ambient			
		thermal conductivity of 200w/mk. Wall is maintained at a uniform			
		5mm spacing. The fins have thickness of 1mm length of 10mm &			
	с	All fins of rectangular profile are attached to a plane wall with	7	L3	CO2
		instant of time.			
		also calculate temperature gradient at the outside surface at this			
		Calculate the energy removed from the cylinder during this period-			
		surface temp of the shaft when its center temperature is 116°C.			
		& coolant is 175 W/m ² K and α =0.0185m ² /hr, what would be the			

4	a	Explain Velocity	boundary layer thickness for a flow over a flat	10	L2	CO3
		plate with a neat sketch.				
	b	Dry air at Atmospheric pressure and 20°C is flowing with a			L3	CO3
		velocity 3m/s along the length of a long flat plate of 0.3m wide.				
		Plate is maintained 100°C.calculate the following quantities at				
		x=0.3m				
		I. Bounda	ry layer thickness.			
		II. Local fr	iction coefficient.			
		III. Average	e friction coefficient.			
		IV. Local sh	near stress due to friction.			
		V. Thickne	ss of thermal boundary layer.			
		VI. Local co	onvection heat transfer coefficient.			
	c	Explain the phy	sical significance of Biot number and Fourier	6	L2	CO2
		number				

Prepared by : Sunil B. Lakkundi